Monday 17 July 2017

Stages Of Moving Durchschnitt Sales Forecasting Technik

3 Verstehen von Prognoseebenen und - methoden Sie können sowohl Detailprognosen (Einzelpositionen) als auch Prognosen für die Gesamtproduktion (Produktlinie) erzeugen, die die Produktbedarfsmuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit Hilfe von 12 Prognosemethoden zu berechnen. Die Prognosen umfassen Detailinformationen auf Positionsebene und übergeordnete Informationen über eine Branche oder das Unternehmen als Ganzes. 3.1 Kriterien für die Bewertung der Projektergebnisse Abhängig von der Auswahl der Verarbeitungsoptionen und der Trends und Muster in den Verkaufsdaten sind einige Prognosemethoden für einen bestimmten historischen Datensatz besser als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie können feststellen, dass eine Prognosemethode, die gute Ergebnisse in einem Stadium eines Produktlebenszyklus bereitstellt, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Diese beiden Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem die ausgewählten Prognosemethoden auf die Vergangenheit des Bestellverlaufs angewendet und die Prognosesimulation mit dem aktuellen Verlauf verglichen werden. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die tatsächlichen Kundenauftragshistorien mit Prognosen für einen bestimmten Zeitraum und berechnet, wie genau die einzelnen Prognosemethoden den Umsatz prognostizieren. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik veranschaulicht die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Sequenz von Schritten, um die beste Anpassung zu ermitteln: Verwenden Sie jede angegebene Methode, um eine Prognose für die Halteperiode zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe mit den simulierten Prognosen für die Halteperiode. Berechnen Sie die POA oder die MAD, um zu bestimmen, welche Prognosemethode am ehesten mit den bisherigen tatsächlichen Umsätzen übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den Verarbeitungsoptionen, die Sie auswählen. Empfehlen Sie eine Best-Fit-Prognose durch die POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten zu Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management nutzt 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode die beste Prognosesituation bietet. Dieser Abschnitt behandelt: Methode 1: Prozent über dem letzten Jahr. Methode 2: Berechnet Prozent über Letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Gleitender Durchschnitt. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter gleitender Mittelwert. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend - und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Prognosegenerierungsprogramm (R34650) verwenden möchten. Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel können Sie das Gewicht, das auf die jüngsten historischen Daten oder den Zeitraum der historischen Daten, die in den Berechnungen verwendet wird, platziert werden. Die Beispiele in dem Leitfaden zeigen die Berechnungsprozedur für jede der verfügbaren Prognosemethoden an, wenn ein identischer Satz von historischen Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden einen Teil oder alle dieser Datensätze, die historische Daten der letzten zwei Jahre sind. Die Prognose geht ins nächste Jahr. Diese Verkäufe Geschichte Daten ist stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Veralterung nähern könnte. 3.2.1 Methode 1: Prozentsatz über letztem Jahr Diese Methode verwendet die Prozentsatz über letztes Jahr Formel, um jede Prognoseperiode mit der angegebenen prozentualen Erhöhung oder Abnahme zu multiplizieren. Zur Prognose der Nachfrage, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Umsatz Geschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Produkten mit Wachstum oder Rückgang prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozentsatz über dem letzten Jahr Die Formel "Prozent über letztes Jahr" multipliziert die Umsatzdaten des Vorjahres mit einem Faktor, den Sie angeben, und dann Projekte, die sich über das nächste Jahr ergeben. Diese Methode kann in der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren, oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognose Spezifikationen: Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die Verkaufsverlaufsdaten der letzten Jahre um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Übereinstimmung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Februarprognose entspricht 117 mal 1,1 128,7 gerundet auf 129. Die Märzprognose entspricht 115 mal 1,1 126,5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztem Jahr Diese Methode verwendet den berechneten Prozentsatz Letztes Jahr Formel, um die vergangenen Verkäufe der angegebenen Perioden mit Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System ermittelt einen prozentualen Anstieg oder Abfall und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu bestimmen. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden der Kundenauftragshistorie plus einem Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die kurzfristige Nachfrage nach Saisonartikeln mit Wachstum oder Rückgang prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über Letztes Jahr Die Formel des berechneten Prozentsatzes über dem letzten Jahr multipliziert Umsatzdaten des Vorjahres mit einem Faktor, der vom System berechnet wird, und dann projiziert er das Ergebnis für das nächste Jahr. Diese Methode könnte bei der Projektion der Auswirkungen der Ausweitung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr nützlich sein, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist. Prognose Spezifikationen: Bereich der Umsatzgeschichte für die Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte der letzten vier Perioden mit denselben vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist die Vorgeschichte, die bei der Prognoseberechnung verwendet wird: n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr in diesem Jahr Diese Methode wird verwendet Letzten Jahren Umsatz für die nächsten Jahre Prognose. Um die Nachfrage prognostizieren zu können, erfordert diese Methode die Anzahl der Perioden, die am besten geeignet sind, plus einem Jahr der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Die Formel "Letztes Jahr in diesem Jahr" kopiert die Verkaufsdaten des Vorjahres bis zum nächsten Jahr. Diese Methode könnte in der Budgetierung nützlich sein, um Verkäufe auf dem gegenwärtigen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber ein erhebliches saisonales Nachfrage-Muster könnte existieren. Vorhersagevorgaben: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognose Berechnung verwendet: Januar-Prognose entspricht Januar des letzten Jahres mit einem Prognosewert von 128. Februar-Prognose entspricht Februar des letzten Jahres mit einem Prognosewert von 117. März-Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um die nächste Periode zu projizieren. Sie sollten es häufig neu berechnen (monatlich oder mindestens vierteljährlich), um den sich ändernden Bedarf zu reflektieren. Um die Nachfrage prognostizieren zu können, erfordert diese Methode die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach reifen Produkten ohne Trend prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um eine Projektion kurzfristig zu bestimmen. Die MA-Prognosemethode bleibt hinter Trends zurück. Forecast Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend-oder saisonale Muster. Diese Methode funktioniert besser für Kurzstrecken-Prognosen von reifen Produkten als für Produkte, die in den Wachstums-oder Obsoleszenz Stufen des Lebenszyklus sind. Prognosedaten: n entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Höhe des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatzniveau zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. Märzprognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die Formel zur linearen Approximation, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend zur Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Änderungen in Trends zu erkennen. Diese Methode erfordert die Anzahl der Perioden der besten Übereinstimmung plus die Anzahl der angegebenen Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit konstanten positiven oder negativen Trends, die nicht aufgrund von saisonalen Schwankungen sind prognostiziert. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Verkaufsverlaufsdatenpunkten basiert. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, weil Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosespezifikationen: n entspricht dem Datenpunkt in der Verkaufsgeschichte, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie beispielsweise n 4 an, um die Differenz zwischen Dezember (jüngste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderlicher Umsatzverlauf: n plus 1 plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1-mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (2-mal 2) 141. März-Prognose Dezember des vergangenen Jahres 1 (Trend) entspricht 137 (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Methode der Least Squares Regression (LSR) leitet eine Gleichung ab, die eine Geradenbeziehung zwischen den historischen Verkaufsdaten beschreibt Und der Lauf der Zeit. LSR paßt auf eine Zeile zum ausgewählten Datenbereich, so daß die Summe der Quadrate der Differenzen zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus der angegebenen Anzahl von historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten ist. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode, um einen linearen Trend in historischen Verkaufsdaten zu identifizieren. Das Verfahren berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X für Zeit steht. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt Funktion Verschiebungen in der Nachfrage. Die lineare Regression passt auf eine gerade Linie zu den Daten, selbst wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn Verkaufsgeschichte-Daten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten Vorhersage-Bias und systematische Fehler auf. Prognosespezifikationen: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie beispielsweise n 4 an, um die Historie von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde ein grßeres n (wie beispielsweise n 24) gewöhnlich verwendet werden. LSR definiert eine Zeile für so wenige wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderlicher Umsatzverlauf: n Perioden plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Märzprognose entspricht 119,5 (7 mal 2,3) 135,6 auf 136 gerundet. 3.2.7 Methode 7: Zweite Grad Approximation Um die Prognose zu projizieren, verwendet diese Methode die Zweite Grad-Approximationsformel, um eine Kurve darzustellen Die auf der Anzahl der Verkaufsphasen beruht. Diese Methode erfordert die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden des Verkaufsauftragsverlaufs mal drei. Diese Methode ist nicht geeignet, die Nachfrage nach einem langfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich, aber dieses Verfahren bestimmt Werte für a, b und c in dieser Prognose Formel: Y a b X c X 2 Das Ziel dieses Verfahrens ist es, eine Kurve auf die Verkaufsgeschichte Daten passen. Dieses Verfahren ist nützlich, wenn sich ein Produkt im Übergang zwischen den Lebenszyklusstufen befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, könnte sich die Absatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig nutzbar. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n die Anzahl der Zeitperioden an, die in jedem der drei Punkte akkumuliert werden sollen. In diesem Beispiel ist n 3. Die tatsächlichen Verkaufsdaten für April bis Juni sind in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passform) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), die 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht 140 129 entspricht Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 stellt die gesamten historischen Verkäufe für April, Mai und Juni dar und ist auf X 1 Q2 dargestellt, entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 repräsentiert Januar bis März. Fig. 3-2 Plotten von Q1, Q2, Q3 und Q4 für die Annäherung zweiter Ordnung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 (Q2 a 2b 4c) (3) Q3 a bX cX 2 mit X 3 (Q3 a 3b 9c) Lösen Sie die drei Gleichungen gleichzeitig (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie die Gleichung 1 (1) aus Gleichung 2 (2) und lösen Sie für b: B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließe diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash ein (Q2 ndash Q2) 2 Das zweite Approximationsverfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ) (N3) n0 (n3) n0 (n2) n0 (n3) n0 (n) n (n) 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Näherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 auf 57 pro Periode gerundet. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose ist 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, Letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Mit dieser Methode können Sie die bestmögliche Anzahl von Perioden des Verkaufsauftragsverlaufs auswählen, die n Monate vor dem Startdatum der Prognose beginnt Wenden Sie einen prozentualen Anstieg oder Abnahme Multiplikationsfaktor, mit dem die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über dem letzten Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, erfordert diese Methode Perioden am besten geeignet plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend vorherzusagen. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Methoden multiplizieren Verkaufsdaten aus einem früheren Zeitraum mit einem von Ihnen angegebenen Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Sie können auch die Flexible Methode verwenden, um einen anderen Zeitraum als denselben Zeitraum des letzten Jahres anzugeben, der als Grundlage für die Berechnungen verwendet werden soll. Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsverlaufsdaten um 10 Prozent zu erhöhen. Basiszeitraum. Zum Beispiel bewirkt n 4, dass die erste Prognose im September des letzten Jahres auf Verkaufsdaten basiert. Mindestens erforderliche Verkaufsgeschichte: Anzahl der Perioden bis zur Basisperiode plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). 3.2.9 Methode 9: Gewichteter gleitender Durchschnitt Die gewichtete gleitende Durchschnittsformel ist vergleichbar mit Methode 4, Gleitende Durchschnittsformel, da sie im Vergleich zum vorausgegangenen Geschäftsverlauf die vorhergehende Verkaufshistorie projiziert. Mit dieser Formel können Sie jedoch Gewichte für jede der vorherigen Perioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden, die am besten zu den Daten passen. Ähnlich wie bei Moving Average, liegt diese Methode hinter den Nachfrage-Trends, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu prognostizieren, die relativ hoch ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ähnelt Methode 4, Gleitender Durchschnitt (MA). Sie können jedoch den historischen Daten bei Verwendung von WMA ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurzfristige kommen. Jüngere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass WMA ist besser auf Veränderungen in der Ebene des Umsatzes. Allerdings Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trends oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Veränderungen im Absatzniveau zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie 3) schneller auf Verschiebungen des Umsatzniveaus, doch könnte die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden zu includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugeordneten Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, weisen Sie Gewichte von 0,50, 0,25, 0,15 und 0,10 zu, wobei die jüngsten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Die Januarprognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 auf 128 gerundet (119 mal 0,10) (128 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 abgerundet auf 128. März-Vorhersage entspricht 119 mal 0,10 (137 mal 0,15) (128 mal 0,25) 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der bisherigen Verkaufsdaten. Bei dieser Methode wird die Anzahl der Perioden der Kundenauftragshistorie (von 1 bis 12) verwendet, die in der Bearbeitungsoption angegeben ist. Das System verwendet eine mathematische Progression, um Daten im Bereich von dem ersten (am wenigsten Gewicht) bis zum letzten Gewicht (das meiste Gewicht) zu wiegen. Das System projiziert diese Informationen zu jeder Periode in der Prognose. Diese Methode benötigt für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die jeweils am besten passende Monatshälfte plus den Kundenauftragshistorie. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trend-oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Basis für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte den historischen Daten, die linear abnehmen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.11 Methode 11: Exponentialglättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert Umsatzdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus die Anzahl der angegebenen historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten vorhanden ist. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In Linear Smoothing weist das System Gewichte auf, die linear auf die historischen Daten zurückgehen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. Die Prognose für die Exponential-Glättungsprognose lautet: Alpha ist das Gewicht, das auf die tatsächlichen Verkäufe für den vorherigen Zeitraum angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für den vorherigen Zeitraum angewendet wird. Werte für Alpha reichen von 0 bis 1 und fallen üblicherweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuweisen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Grße der Verkäufe zu berechnen. Werte für den Alphabereich von 0 bis 1. n entspricht dem Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Im Allgemeinen reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.12 Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus zwei Jahre der Umsatzdaten und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Betafaktor eingeben oder das System berechnen lassen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größenordnung des Umsatzes (alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode ähnelt Methode 11, Exponentialglättung, indem ein geglätteter Mittelwert berechnet wird. Das Verfahren 12 enthält jedoch auch einen Begriff in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst wird. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Alpha entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Werte für Alpha reichen von 0 bis 1. Beta entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und beta sind voneinander unabhängig. Sie müssen nicht auf 1,0 Summe. Mindestens erforderlicher Umsatzverlauf: Ein Jahr plus Anzahl der Zeiträume, die zur Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). Wenn zwei oder mehr Jahre historischer Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei Exponential-Glättungsgleichungen und einen einfachen Mittelwert, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher mittlerer saisonaler Index Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T die aktuelle Zeitspanne ist. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. In dieser Tabelle wird der Verlauf der Prognoseberechnung aufgelistet: Dieser Abschnitt bietet einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um so viele wie 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode kann eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt verwenden. Das System wertet automatisch die Leistung für jede von Ihnen ausgewählte Prognosemethode und für jedes von Ihnen prognostizierte Produkt aus. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Diese beiden Leistungsbewertungsverfahren erfordern für einen von Ihnen festgelegten Zeitraum tatsächliche Umsatzverlaufsdaten. Der Zeitraum der jüngsten Geschichte für die Auswertung verwendet wird als eine Übergangszeit oder Periode der besten Passform. Um die Performance einer Prognosemethode zu messen, verwendet das System die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Stellt einen Vergleich zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum her. Wenn Sie mehrere Prognosemethoden auswählen, tritt dieser Prozess für jede Methode auf. Mehrere Prognosen werden für die Halteperiode berechnet und im Vergleich zu der bekannten Verkaufsgeschichte für den gleichen Zeitraum. Für die Verwendung in den Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. Diese Empfehlung ist spezifisch für jedes Produkt und kann sich jedes Mal ändern, wenn Sie eine Prognose generieren. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. FORECASTING Forecasting involves the generation of a number, set of numbers, or scenario that corresponds to a future occurrence. Es ist absolut notwendig, kurz-und langfristige Planung. Definitionsgemäß basiert eine Prognose auf vergangenen Daten, im Gegensatz zu einer Prognose, die subjektiv ist und auf Instinkt, Bauchgefühl basiert oder erraten wird. Zum Beispiel die Abendnachrichten gibt das Wetter x0022forecastx0022 nicht das Wetter x0022prediction. x0022 Unabhängig davon werden die Begriffe Vorhersage und Vorhersage oft interchangeably verwendet. Beispielsweise definieren Definitionen der regressionx2014a-Technik, die manchmal in der Prognose x2014 verwendet werden, generell, dass ihr Ziel darin besteht, zu erklären oder x0022predict. x0022 Die Prognose basiert auf einer Reihe von Annahmen: Die Vergangenheit wird sich wiederholen. Mit anderen Worten, was in der Vergangenheit passiert ist, wird in der Zukunft wieder passieren. Wenn sich der Prognosehorizont verkürzt, steigt die Prognosegenauigkeit. Zum Beispiel wird eine Prognose für morgen genauer sein als eine Prognose für den nächsten Monat eine Prognose für nächsten Monat wird genauer sein als eine Prognose für das nächste Jahr und eine Prognose für das nächste Jahr wird genauer sein als eine Prognose für zehn Jahre in der Zukunft. Die Prognose in der Summe ist genauer als die Prognose einzelner Posten. Das bedeutet, dass ein Unternehmen die gesamte Nachfrage über sein gesamtes Produktspektrum prognostizieren kann, als es in der Lage ist, einzelne Lagerhaltungseinheiten (SKUs) zu prognostizieren. Zum Beispiel kann General Motors genauer prognostizieren die Gesamtzahl der Autos für das nächste Jahr benötigt als die Gesamtzahl der weißen Chevrolet Impalas mit einem bestimmten Optionspaket. Prognosen sind selten genau. Darüber hinaus sind die Prognosen fast nie völlig korrekt. Während einige sehr nah sind, sind wenige x0022reight auf dem money. x0022 Daher ist es ratsam, eine Prognose anzubieten x0022range. x0022 Wenn man eine Nachfrage von 100.000 Einheiten für den nächsten Monat prognostizieren würde, ist es extrem unwahrscheinlich, dass die Nachfrage 100.000 entsprechen würde genau. Allerdings würde eine Prognose von 90.000 bis 110.000 ein viel größeres Ziel für die Planung zur Verfügung stellen. William J. Stevenson listet eine Reihe von Merkmalen, die für eine gute Prognose gemeinsam sind: Accuratex2014some Genauigkeitsgrad sollte ermittelt und angegeben werden, so dass Vergleiche auf alternative Prognosen vorgenommen werden können. Reliablex2014die Prognosemethode sollte konsistent eine gute Prognose liefern, wenn der Benutzer ein gewisses Maß an Vertrauen festlegen soll. Timelyx2014a eine gewisse Zeit benötigt wird, um auf die Prognose reagieren, so dass der Prognose-Horizont muss die Zeit notwendig, um Änderungen vorzunehmen. Einfach zu bedienen und verstehenx2014users der Prognose muss sicher sein und komfortabel mit ihm zu arbeiten. Kosten-effektiv x2014die Kosten der Herstellung der Prognose sollten nicht überwiegen die Vorteile aus der Prognose erhalten. Prognosetechniken reichen von der einfachen bis zur extrem komplexen. Diese Techniken werden in der Regel als qualitativ oder quantitativ klassifiziert. QUALITATIVE TECHNIKEN Qualitative Prognosetechniken sind in der Regel subjektiver als ihre quantitativen Pendants. Qualitative Techniken sind nützlicher in den früheren Phasen des Produktlebenszyklus, wenn weniger vergangene Daten existieren für den Einsatz in quantitativen Methoden. Zu den qualitativen Methoden gehören die Delphi-Technik, die Nominal Group Technique (NGT), Außendienstmitarbeit, Stellungnahmen und Marktforschung. DIE DELPHI-TECHNIK. Die Delphi-Technik nutzt eine Expertengruppe, um eine Prognose zu erstellen. Jeder Experte wird gebeten, eine Prognose zu liefern, die spezifisch für die Notwendigkeit ist. Nachdem die ersten Prognosen gemacht wurden, liest jeder Experte, was jeder andere Experte schreibt und wird natürlich von seinen Ansichten beeinflusst. Eine anschließende Prognose erfolgt dann durch jeden Fachmann. Jeder Experte liest dann wieder, was jeder andere Experte schreibt und wird wiederum von den Wahrnehmungen der anderen beeinflusst. Dieser Vorgang wiederholt sich, bis jeder Experte nähert sich Einverständnis über die erforderlichen Szenario oder Zahlen. NOMINAL GRUPPE TECHNIK. Nominal Group Technique ist ähnlich wie die Delphi-Technik, dass es eine Gruppe von Teilnehmern, in der Regel Experten nutzt. Nachdem die Teilnehmer auf prognoserelevante Fragen antworten, rangieren sie ihre Antworten in der Reihenfolge ihrer wahrgenommenen relativen Bedeutung. Dann werden die Ranglisten gesammelt und aggregiert. Schließlich sollte die Gruppe einen Konsens über die Prioritäten der rangierten Fragen erreichen. SALES FORCE MEINUNGEN. Die Vertriebsmitarbeiter sind oft eine gute Informationsquelle für die zukünftige Nachfrage. Der Vertriebsleiter kann von jedem Vertriebsmitarbeiter Input verlangen und seine Reaktionen in eine Verkaufskraft zusammengesetzte Prognose zusammenfassen. Bei der Verwendung dieser Technik ist Vorsicht geboten, da die Mitglieder des Außendienstes möglicherweise nicht unterscheiden können, was die Kunden sagen und was sie tatsächlich tun. Auch, wenn die Prognosen verwendet werden, um Verkaufsquoten zu errichten, kann die Vertriebsmannschaft versucht werden, niedrigere Schätzungen zur Verfügung zu stellen. EXECUTIVE MEINUNGEN. Manchmal treffen Führungskräfte auf höherer Ebene zusammen und entwickeln Prognosen basierend auf ihrem Wissen über ihre Verantwortungsbereiche. Dies wird manchmal als eine Jury von Executive Stellungnahme bezeichnet. MARKTFORSCHUNG. In der Marktforschung werden Verbrauchererhebungen zur Ermittlung der potenziellen Nachfrage eingesetzt. Solche Marketing-Forschung beinhaltet in der Regel den Bau eines Fragebogens, der persönlichen, demografischen, wirtschaftlichen und Marketing-Informationen verlangt. Gelegentlich sammeln Marktforscher diese Informationen persönlich an den Einzelhändlern und in den Einkaufszentren, in denen der Verbraucher experiencex2014taste, das Gefühl, den Geruch und das seex2014a bestimmte Produkt erfahren kann. Der Forscher muss darauf achten, dass die Stichprobe der befragten Personen repräsentativ für das gewünschte Ziel ist. QUANTITATIVE TECHNIKEN Quantitative Prognosetechniken sind in der Regel objektiver als ihre qualitativen Pendants. Quantitative Prognosen können Zeitreihenprognosen (d. H. Eine Projektion der Vergangenheit in die Zukunft) oder Prognosen auf der Grundlage assoziativer Modelle (d. h. basierend auf einer oder mehreren erklärenden Variablen) sein. Zeitreihen-Daten können unterliegende Verhaltensweisen haben, die vom Prognostiker identifiziert werden müssen. Darüber hinaus kann die Prognose möglicherweise die Ursachen des Verhaltens zu identifizieren. Einige dieser Verhaltensweisen können Muster oder einfach zufällige Variationen sein. Zu den Mustern gehören: Trends, die langfristige Bewegungen (nach oben oder unten) in den Daten sind. Saisonalität, die kurzfristige Schwankungen erzeugt, die in der Regel mit der Zeit des Jahres, des Monats oder sogar eines bestimmten Tages zusammenhängen, wie zum Beispiel der Einzelhandel am Weihnachtsmarkt oder die Spikes im Bankgeschäft am ersten und am Freitag. Zyklen, die wellenartige Schwankungen von mehr als einem Jahr, die in der Regel an wirtschaftliche oder politische Bedingungen gebunden sind. Unregelmäßige Variationen, die kein typisches Verhalten widerspiegeln, wie z. B. eine extreme Wetterperiode oder ein Gewerkschaftsschlag. Zufällige Variationen, die alle nicht-typischen Verhaltensweisen umfassen, die nicht von den anderen Klassifikationen berücksichtigt werden. Among the time-series models, the simplest is the naxEFve forecast. Eine naxEFve-Prognose verwendet einfach die tatsächliche Nachfrage für die vergangene Periode als die prognostizierte Nachfrage für den nächsten Zeitraum. Dies setzt natürlich voraus, dass sich die Vergangenheit wiederholt. Es geht auch davon aus, dass alle Trends, Saisonalität oder Zyklen entweder in der vorherigen Periode entsprechen oder nicht existieren. Ein Beispiel für die naxEFve-Prognose ist in Tabelle 1 dargestellt. Tabelle 1 NaxEFve Prognose Eine weitere einfache Technik ist die Verwendung der Mittelung. Um eine Prognose über die Mittelung zu machen, nimmt man einfach den Durchschnitt aus einer Anzahl von Perioden von vergangenen Daten, indem jede Periode summiert und das Ergebnis durch die Anzahl der Perioden dividiert wird. Diese Technik hat sich als sehr effektiv für die Nahbereichsprognose erwiesen. Variationen des Mittelwerts umfassen den gleitenden Durchschnitt, den gewichteten Durchschnitt und den gewichteten gleitenden Durchschnitt. Ein gleitender Durchschnitt nimmt eine vorbestimmte Anzahl von Perioden, summiert seine tatsächliche Nachfrage und teilt sich durch die Anzahl von Perioden, um eine Prognose zu erreichen. Für jede nachfolgende Periode fällt die älteste Datenperiode ab und die letzte Periode wird hinzugefügt. Unter der Annahme eines dreimonatigen Gleitendurchschnitts und der Verwendung der Daten aus Tabelle 1 würde man einfach 45 (Januar), 60 (Februar) und 72 (März) addieren und durch drei dividieren, um zu einer Prognose für April 45 60 72 177 zu kommen X00F7 3 59 Um eine Prognose für Mai zu erreichen, würde man die Nachfrage von Januarx0027 aus der Gleichung fallen lassen und die Nachfrage von April an hinzufügen. Tabelle 2 zeigt ein Beispiel für eine dreimonatige gleitende Durchschnittsprognose. Tabelle 2 Drei Monate bewegte durchschnittliche Prognose Aktuelle Nachfrage (000x0027s) Ein gewichteter Durchschnitt wendet ein vorbestimmtes Gewicht auf jeden Monat der vergangenen Daten an, summiert die vergangenen Daten aus jeder Periode und dividiert durch die Summe der Gewichte. Wenn der Prognostiker die Gewichte so einstellt, dass ihre Summe gleich 1 ist, dann werden die Gewichte mit dem tatsächlichen Bedarf jeder anwendbaren Periode multipliziert. Die Ergebnisse werden dann summiert, um eine gewichtete Prognose zu erreichen. Im Allgemeinen gilt, je jünger die Daten, je höher das Gewicht, und je älter die Daten, desto kleiner das Gewicht. Unter Verwendung des Bedarfsbeispiels wird ein gewichteter Durchschnitt unter Verwendung von Gewichten von 0,4. 3. 2, and .1 would yield the forecast for June as: 60(.1) 72(.2) 58(.3) 40(.4) 53.8 Forecasters may also use a combination of the weighted average and moving average forecasts. Eine gewichtete gleitende Durchschnittsprognose weist Gewichte einer vorbestimmten Anzahl von Perioden tatsächlicher Daten zu und berechnet die Prognose auf die gleiche Weise wie oben beschrieben. Wie bei allen sich bewegenden Prognosen, wenn jede neue Periode hinzugefügt wird, werden die Daten aus der ältesten Periode verworfen. Tabelle 3 zeigt eine dreimonatige gewichtete gleitende Durchschnittsprognose unter Verwendung der Gewichte .5. 3 und .2. Eine komplexere Form des gewichteten gleitenden Mittelwertes ist eine exponentielle Glättung, die so genannt wird, weil das Gewicht exponentiell abfällt, wenn die Daten altern. Tabelle 3 Dreix2013Month Gewichtete gleitende Durchschnittsprognose Aktuelle Nachfrage (000x0027s) Die exponentielle Glättung nimmt die vorherige Periode x0027s voraus und passt sie durch eine vorgegebene Glättungskonstante an, wobei x03AC (alpha genannt wird, wobei der Wert für alpha kleiner als eins ist) multipliziert mit der Differenz der vorherigen Prognose und der Nachfrage, die tatsächlich während des vorher prognostizierten Zeitraums aufgetreten ist Prognosefehler). Die exponentielle Glättung wird wie folgt formuliert: Neue Prognose vorherige Prognose alpha (tatsächliche Nachfrage x2212 vorherige Prognose) FF x03AC (A x2212 F) Eine exponentielle Glättung erfordert, dass der Prognostiker die Prognose in einem vergangenen Zeitraum beginnt und auf den Zeitraum vorbereitet, für den ein Strom vorliegt Prognose erforderlich ist. Eine beträchtliche Menge an vergangenen Daten und eine Anfangs - oder erste Prognose sind ebenfalls notwendig. Die ursprüngliche Prognose kann eine tatsächliche Prognose aus einem früheren Zeitraum, die tatsächliche Nachfrage aus einer früheren Periode, oder sie kann durch Mittelung aller oder eines Teils der vergangenen Daten geschätzt werden. Einige Heuristiken existieren für die Berechnung einer ersten Prognose. Zum Beispiel würde die Heuristik N (2 xF7 x03AC) x2212 1 und ein Alpha von 0,5 ein N von 3 ergeben, was anzeigt, dass der Benutzer die ersten drei Perioden von Daten abfragen würde, um eine erste Prognose zu erhalten. Jedoch ist die Genauigkeit der Anfangsprognose nicht kritisch, wenn man große Datenmengen verwendet, da die exponentielle Glättung x0022 selbstkorrigierend ist. X0022 Wenn genügend Perioden von vergangenen Daten vorhanden sind, wird eine exponentielle Glättung schließlich genügend Korrekturen zur Kompensation einer vernünftigen ungenauen Initialisierung bewirken Prognose. Unter Verwendung der in anderen Beispielen verwendeten Daten, einer anfänglichen Prognose von 50 und einer Alpha von 0,7 wird eine Prognose für Februar als solche berechnet: Neue Prognose (Februar) 50 .7 (45 × 2212 50) 41.5 Als nächstes wird die Prognose für März : Neue Prognose (März) 41.5 .7 (60 x2212 41.5) 54.45 Dieser Vorgang wird fortgesetzt, bis der Prognostiker den gewünschten Zeitraum erreicht hat. In Tabelle 4 wäre dies für den Monat Juni, da die tatsächliche Nachfrage für Juni nicht bekannt ist. Ist-Nachfrage (000x0027s) Eine Erweiterung der exponentiellen Glättung kann verwendet werden, wenn Zeitreihen-Daten einen linearen Trend aufweisen. Diese Methode ist durch mehrere Namen bekannt: doppelte Glättung Trend-adjustierte exponentielle Glättungsprognose einschließlich Trend (FIT) und Holtx0027s Modell. Ohne Anpassung werden einfache exponentielle Glättungsergebnisse dem Trend zuwiderlaufen, dh die Prognose wird immer niedrig sein, wenn der Trend steigt oder hoch, wenn der Trend abnimmt. Bei diesem Modell gibt es zwei Glättungskonstanten, x03AC und x03B2, wobei x03B2 die Trendkomponente darstellt. Eine Erweiterung des Holtx0027s-Modells, genannt Holt-Winterx0027s-Methode, berücksichtigt sowohl Trend - als auch Saisonalität. Es gibt zwei Versionen, multiplikativ und additiv, wobei das multiplikative das am meisten verwendete ist. In dem additiven Modell wird die Saisonalität als eine Menge ausgedrückt, die dem Serienmittel hinzugefügt oder davon subtrahiert werden soll. Das multiplikative Modell drückt die Saisonalität als Prozentsatz aus, der als saisonale Verwandte oder saisonale Indizes des durchschnittlichen (oder Trendes) bezeichnet wird. Diese werden dann multipliziert mit Zeitwerten, um Saisonalität zu berücksichtigen. Ein relativer Wert von 0,8 würde eine Nachfrage von 80 Prozent des Durchschnitts anzeigen, während 1,10 eine Nachfrage anzeigen würde, die 10 Prozent über dem Durchschnitt liegt. Detaillierte Informationen zu dieser Methode finden Sie in den meisten Operations Management Lehrbüchern oder einer von einer Reihe von Bücher über die Prognose. Assoziative oder kausale Techniken beinhalten die Identifikation von Variablen, die verwendet werden können, um eine andere Variable von Interesse vorherzusagen. Zum Beispiel können die Zinssätze verwendet werden, um die Nachfrage nach Hause Refinanzierung prognostizieren. Typischerweise beinhaltet dies die Verwendung einer linearen Regression, wobei das Ziel darin besteht, eine Gleichung zu entwickeln, die die Wirkungen der Prädiktor (unabhängigen) Variablen auf die prognostizierte (abhängige) Variable zusammenfasst. Wenn die Prädiktorvariable aufgetragen wurde, wäre das Ziel, eine Gleichung einer Geraden zu erhalten, die die Summe der quadrierten Abweichungen von der Linie minimiert (wobei die Abweichung der Abstand von jedem Punkt zur Linie ist). Die Gleichung lautet: ya bx, wobei y die vorhergesagte (abhängige) Variable ist, x die Prädiktor - (unabhängige) Variable, b die Steigung der Linie und a gleich der Höhe der Linie an der y - abfangen. Sobald die Gleichung bestimmt ist, kann der Benutzer aktuelle Werte für die Prädiktor (unabhängige) Variable einfügen, um zu einer Prognose (abhängige Variable) zu gelangen. Wenn es mehr als eine Prädiktorvariable gibt oder wenn die Beziehung zwischen Prädiktor und Prognose nicht linear ist, wird eine einfache lineare Regression nicht ausreichend sein. Für Situationen mit mehreren Prädiktoren sollte eine multiple Regression angewendet werden, während nicht-lineare Beziehungen die Verwendung einer krummlinigen Regression verlangen. ÖKONOMETRISCHE FORECASTING Ökonometrische Methoden, wie das autoregressive integrierte Moving Average Model (ARIMA), verwenden komplexe mathematische Gleichungen, um frühere Beziehungen zwischen Nachfrage und Variablen zu zeigen, die die Nachfrage beeinflussen. Eine Gleichung wird abgeleitet und dann getestet und fein abgestimmt, um sicherzustellen, dass es so zuverlässig wie möglich eine Darstellung der Vergangenheitsbeziehung ist. Sobald dies geschieht, werden die projizierten Werte der Einflussgrößen (Einkommen, Preise usw.) in die Gleichung eingefügt, um eine Prognose zu erstellen. AUSWERTUNG DER PROGNOSEN Die Vorhersagegenauigkeit kann durch Berechnung der Vorspannung, der mittleren absoluten Abweichung (MAD), des mittleren quadratischen Fehlers (MSE) oder des mittleren absoluten prozentualen Fehlers (MAPE) für die Prognose mit unterschiedlichen Werten für alpha bestimmt werden. Bias ist die Summe der Prognosefehler x2211 (FE). Für die obige Exponentialglättung wäre die berechnete Vorspannung: (60 × 2212 41,5) (72 × 2212 54,45) (58 × 2212 66,74) (40 × 2212 60,62) 6,69 Wenn man annimmt, dass eine niedrige Vorspannung einen insgesamt niedrigen Prognosefehler anzeigt, Berechnen Sie die Vorspannung für eine Anzahl von potentiellen Werten von alpha und nehmen Sie an, dass diejenige mit der niedrigsten Bias die genaueste wäre. Allerdings ist darauf zu achten, dass ungenaue Wetterprognosen zu einem niedrigen Bias führen können, wenn sie sowohl über Prognose als auch unter Prognosen (negativ und positiv) liegen. Zum Beispiel kann über drei Perioden eine Firma einen bestimmten Wert von Alpha verwenden, um eine Prognose von 75.000 Einheiten (x221275.000), unter Prognose von 100.000 Einheiten (100.000) und dann über Prognose von 25.000 Einheiten (x221225.000), nachgeben Eine Vorspannung von null (x221275.000 100.000 x2212 25.000 0). Im Vergleich dazu würde ein weiteres Alpha, das über Prognosen von 2.000 Einheiten, 1.000 Einheiten und 3.000 Einheiten resultiert, zu einer Vorspannung von 5.000 Einheiten führen. Wenn die normale Nachfrage 100.000 Einheiten pro Periode betrug, würde das erste Alpha Prognosen liefern, die um bis zu 100 Prozent ausgeschaltet wären, während das zweite Alpha um maximal 3 Prozent ausgeschaltet wäre, obwohl die Vorspannung in der ersten Prognose Null war. Ein sichereres Maß für die Prognosegenauigkeit ist die mittlere absolute Abweichung (MAD). Um den MAD zu berechnen, summiert der Prognostiker den Absolutwert der Prognosefehler und dividiert dann durch die Anzahl der Prognosen (x2211 FE x00F7 N). Durch die Berücksichtigung des Absolutwerts der Prognosefehler wird die Verrechnung von positiven und negativen Werten vermieden. Dies bedeutet, dass sowohl eine Überprognose von 50 als auch eine Unterprognose von 50 um 50 ausgeschaltet sind. Unter Verwendung der Daten aus dem exponentiellen Glättungsbeispiel kann MAD wie folgt berechnet werden: (60 · 2212 41,5 72 · 2212 54,45 58 · 2212 66,74 40 · 2212 60,62) X00F7 4 16.35 Demzufolge liegt der Prognose durchschnittlich bei 16,35 Einheiten pro Prognose. Im Vergleich zum Ergebnis anderer Alphas wird der Prognostiker wissen, dass das Alpha mit dem niedrigsten MAD die genaueste Prognose liefert. Mean square error (MSE) can also be utilized in the same fashion. MSE ist die Summe der Prognosefehler quadriert dividiert durch N-1 (x2211 (FE)) x00F7 (N-1). Das Quadrieren der Prognosefehler eliminiert die Möglichkeit, negative Zahlen auszugleichen, da keines der Ergebnisse negativ sein kann. Unter Verwendung der gleichen Daten wie oben würde der MSE sein: (18.5) (17.55) (x22128.74) (x221220.62) x00F7 3 383.94 Wie bei MAD kann der Prognostor die MSE von Prognosen vergleichen, die unter Verwendung verschiedener Werte von & alpha; Dass das Alpha mit dem niedrigsten MSE die genaueste Prognose ergibt. Der mittlere absolute Prozentfehler (MAPE) ist der durchschnittliche absolute Prozentfehler. Um zu dem MAPE zu gelangen, muss man die Summe der Verhältnisse zwischen Prognosefehler und Ist-Bedarf mal 100 (um den Prozentsatz zu erhalten) und dividieren durch N (x2211 Ist-Bedarf x2212 Prognose x00F7 Ist-Bedarf) xD7 100 x00F7 N. Mit den Daten von Kann das exponentielle Glättungsbeispiel MAPE wie folgt berechnet werden: (18.560 17.5572 8.7458 20.6248) xD7 100 x00F7 4 28.33 Wie bei MAD und MSE gilt, je niedriger der relative Fehler, desto genauer die Prognose. Es sollte angemerkt werden, dass in einigen Fällen die Fähigkeit der Prognose, sich schnell auf Veränderungen in den Datenmustern zu ändern, als wichtiger als die Genauigkeit angesehen wird. Daher sollte eine Wahl der Prognosemethode die relative Ausgewogenheit von Wichtigkeit zwischen Genauigkeit und Ansprechempfindlichkeit widerspiegeln, wie vom Prognostiker bestimmt. HERSTELLUNG EINES VORHABENS William J. Stevenson listet die folgenden grundlegenden Schritte im Prognoseprozess auf: Bestimmen Sie den prognostizierten Zweck. Faktoren wie, wie und wann die Prognose verwendet wird, bestimmen den Genauigkeitsgrad und die gewünschte Detaillierungsstufe. Sie bestimmen die Kosten (Zeit, Geld, Mitarbeiter), die der Prognose und der Art der zu verwendenden Prognosemethode zugeordnet werden können . Stellen Sie einen Zeithorizont fest. Dies geschieht, nachdem man den Zweck der Prognose bestimmt hat. Längerfristige Prognosen erfordern längere Zeithorizonte und umgekehrt. Genauigkeit ist wieder eine Überlegung. Wählen Sie eine Prognosetechnik. Die gewählte Technik hängt von dem Zweck der Prognose, dem gewünschten Zeithorizont und den zulässigen Kosten ab. Daten erfassen und analysieren. Die Menge und Art der benötigten Daten wird durch den Prognosezweck, die gewählte Prognosemethode und alle Kostenüberlegungen bestimmt. Machen Sie die Prognose. Überwachen Sie die Prognose. Bewerten Sie die Leistung der Prognose und ändern, wenn nötig. WEITERES LESEN: Finch, Byron J. Operations Now: Rentabilität, Prozesse, Leistung. 2 ed. Boston: McGraw-Hill Irwin, 2006. Grün, William H. Ökonometrische Analyse. 5 ed. Upper Saddle River, NJ: Prentice Hall, 2003. Joppe, Dr. Marion. X0022The Nominal Group Technique. x0022 Der Forschungsprozess. Erhältlich bei x003C ryerson. ca Stevenson, William J. Operations Management. 8 ed. Boston: McGraw-Hill Irwin, 2005. Lesen Sie auch Artikel über die Prognose von Wikipedia


No comments:

Post a Comment